Physics Equations (PHY 2130 / 2140)
Below is a compact equation sheet for Physics 1 students.
Each equation includes a quick guide to symbols.
Constants
- $G = 6.67\times 10^{-11}\, \mathrm{N\,m^2/kg^2}$
- $M_{\oplus} = 5.97\times 10^{24}\, \mathrm{kg}$
- $R_{\oplus} = 6.38\times 10^{6}\, \mathrm{m}$
- $g = 9.8\, \mathrm{N/kg} = 9.8\, \mathrm{m/s^2}$
- $k_B = 1.38\times 10^{-23}\, \mathrm{J/K}$
- $R = 8.31\, \mathrm{J/(mol\,K)}$
- $e = 1.602\times 10^{-19}\, \mathrm{C}$
- $k_c = 8.99\times 10^{9}\, \mathrm{N\,m^2/C^2}$
- $\varepsilon_0 = 8.85\times 10^{-12}\, \mathrm{C^2/(N\,m^2)}$
- $\mu_0 = 4\pi\times 10^{-7}\, \mathrm{T\,m/A}$
Vector / Trig Summary
Right triangle: \(\text{hyp}^2 = \text{opp}^2 + \text{adj}^2\)
Trig: \(\sin\theta = \frac{\text{opp}}{\text{hyp}},\qquad \cos\theta = \frac{\text{adj}}{\text{hyp}},\qquad \tan\theta = \frac{\text{opp}}{\text{adj}}\)
Symbols
- $\theta$: angle
- hyp/opp/adj: hypotenuse / opposite / adjacent
Vector components: \(\vec A = A_x \hat i + A_y \hat j\)
\[A_x = A\cos\theta,\qquad A_y = A\sin\theta\]Symbols
- $\vec A$: vector
- $A$: magnitude
- $A_x, A_y$: components
- $\hat i,\hat j$: unit vectors
Unit 2 – Motion (Kinematics)
Position: \(\vec r = x\,\hat i + y\,\hat j\)
Displacement: \(\Delta\vec r = \vec r_f - \vec r_i\)
Average speed: \(v_{\text{avg}} = \frac{\text{distance}}{\Delta t}\)
Average velocity: \(\vec v_{\text{avg}} = \frac{\Delta\vec r}{\Delta t}\)
Average acceleration: \(\vec a_{\text{avg}} = \frac{\Delta\vec v}{\Delta t}\)
Constant-acceleration relations: \(v_f = v_i + a t\)
\[\Delta x = v_i t + \frac12 a t^2\] \[v_f^2 = v_i^2 + 2a\Delta x\]Symbols
- $x,y$: position coordinates (m)
- $\vec r_i,\vec r_f$: initial/final position
- $v_i,v_f$: initial/final velocity (m/s)
- $a$: acceleration (m/s$^2$)
- $t,\Delta t$: time (s)
- $\Delta x$: displacement (m)
Unit 3 – Forces & Newton’s Laws
Net force: \(\vec F_{\text{net}}=\sum \vec F\)
Newton’s 2nd law: \(\vec F_{\text{net}}=m\vec a\)
Weight: \(W = mg\)
Hooke’s law: \(F_s = k\Delta x\)
Friction: \(f_s \le \mu_s N,\qquad f_k=\mu_k N\)
Impulse: \(\vec I = \vec F\,\Delta t = m\Delta\vec v\)
Symbols
- $m$: mass (kg)
- $N$: normal force (N)
- $k$: spring constant (N/m)
- $\mu_s,\mu_k$: static/kinetic friction coefficients
- $\vec I$: impulse (N·s)
Unit 4 – Solids & Fluids
Density: \(\rho = \frac{m}{V}\)
Pressure: \(P=\frac{F}{A}\)
Hydrostatic pressure: \(P = P_0 + \rho g d\)
Buoyant force: \(F_B = \rho_f V_f g\)
Surface tension pressure: \(\Delta P = \frac{2\gamma}{r}\)
Continuity: \(Q = Av = \text{constant}\)
Poiseuille’s law: \(Q = \frac{\pi R^4}{8\mu L}\Delta P\)
Bernoulli: \(P+\frac12\rho v^2+\rho g y = \text{constant}\)
Symbols
- $\rho$: density (kg/m$^3$)
- $P$: pressure (Pa)
- $P_0$: surface pressure
- $d$: depth (m)
- $F_B$: buoyant force (N)
- $\rho_f$: fluid density
- $V_f$: displaced volume
- $\gamma$: surface tension
- $Q$: flow rate (m$^3$/s)
- $R$: tube radius, $L$: tube length
- $\mu$: viscosity
Unit 5 – Energy & Work
Work: \(W = F_{\parallel} d\)
Kinetic energy: \(K = \frac12 mv^2\)
Gravitational potential energy: \(U_g = mgy\)
Spring potential energy: \(U_s=\frac12 k(\Delta x)^2\)
Total mechanical energy: \(E_{\text{tot}} = K + U + E_{\text{th}} + \dots\)
Power: \(P=\frac{\Delta E}{\Delta t}\)
Symbols
- $W$: work (J)
- $K$: kinetic energy (J)
- $U_g,U_s$: potential energies (J)
- $P$: power (W)
Unit 6 – Thermodynamics
Temperature conversion: \(T(K)=T(^{\circ}C)+273.15\)
Heat: \(Q=mc\Delta T\)
Ideal gas law: \(PV = Nk_BT = nRT\)
Average kinetic energy (ideal gas): \(K_{\text{avg}}=\frac32 k_B T\)
RMS speed: \(v_{\text{rms}}=\sqrt{\frac{3k_BT}{m}}\)
First law: \(\Delta U = W + Q\)
Symbols
- $Q$: heat (J)
- $c$: specific heat (J/kg·K)
- $n$: moles
- $N$: number of molecules
- $U$: internal energy (J)
Unit 7 – Electricity & Magnetism
Coulomb’s Law
\(F_e = k_c\frac{|q_1 q_2|}{r^2}\)
Symbols
- $F_e$: electric force (N)
- $k_c$: Coulomb constant
- $q_1,q_2$: charges (C)
- $r$: separation (m)
Electric Field
\(E = k_c\frac{|q|}{r^2}\)
\[\vec F = q\vec E\]Symbols
- $E$: electric field (N/C or V/m)
- $q$: charge (C)
- $\vec F$: force on charge (N)
Electric Potential & Energy
\(V = k_c\frac{q}{r}\)
\[U_e = k_c\frac{q_1 q_2}{r}\] \[\Delta U = q\Delta V\]Symbols
- $V$: electric potential (V)
- $U_e$: electric potential energy (J)
- $\Delta V$: potential difference
Capacitance
\(C=\frac{Q}{V}\)
\[C=\varepsilon_0\frac{A}{d}\] \[U=\frac12 CV^2=\frac12 QV=\frac{Q^2}{2C}\]Symbols
- $C$: capacitance (F)
- $Q$: charge stored (C)
- $V$: voltage (V)
- $\varepsilon_0$: permittivity of free space
- $A$: plate area (m$^2$)
- $d$: separation (m)
- $U$: stored energy (J)
Current & Ohm’s Law
\(I=\frac{\Delta Q}{\Delta t}\)
\[V = IR\]Power: \(P = IV = I^2R = \frac{V^2}{R}\)
Resistors in series: \(R_{\text{eq}}=R_1+R_2+\cdots\)
Resistors in parallel: \(\frac1{R_{\text{eq}}}=\frac1{R_1}+\frac1{R_2}+\cdots\)
Symbols
- $I$: current (A)
- $R$: resistance (Ω)
- $P$: power (W)
Magnetic Force
Moving charge: \(F_B=qvB\sin\theta\)
Current-carrying wire: \(F=ILB\sin\theta\)
Symbols
- $B$: magnetic field (T)
- $\theta$: angle between motion/current and $B$
Magnetic Field from Currents
Long straight wire: \(B=\frac{\mu_0 I}{2\pi r}\)
Solenoid: \(B=\mu_0 nI\)
Symbols
- $\mu_0$: permeability of free space
- $n$: turns per unit length
- $r$: distance from wire
Magnetic Flux & Induction
\(\Phi_B = BA\cos\theta\)
Faraday’s Law: \(\varepsilon = -\frac{d\Phi_B}{dt}\)
Symbols
- $\Phi_B$: magnetic flux (Wb)
- $\varepsilon$: induced emf (V)
- $A$: area of loop (m$^2$)
(New) Capacitors in Series/Parallel
Series: \(\frac{1}{C_{\text{eq}}}=\frac{1}{C_1}+\frac{1}{C_2}+\cdots\)
Parallel: \(C_{\text{eq}}=C_1+C_2+\cdots\)
Symbols
- $C_{\text{eq}}$: equivalent capacitance (F)
(New) Lorentz Force (vector form)
\[\vec F = q\vec E + q\,\vec v\times \vec B\]Symbols
- $\vec v$: velocity of charge (m/s)
- $\times$: cross product
Unit 8 – Diffusion, Brownian Motion & Terminal Velocity (Labs)
Brownian Motion / Diffusion
Mean-square displacement:
1D: \(x_{\text{rms}}^2 = 2Dt\)
2D: \(r_{\text{rms}}^2 = 4Dt\)
3D: \(r_{\text{rms}}^2 = 6Dt\)
Diffusion flux (Fick’s law): \(J = -D\frac{\Delta n}{\Delta x}\)
Stokes-Einstein relation: \(D = \frac{k_B T}{6\pi\mu r}\)
Symbols
- $D$: diffusion constant (m$^2$/s)
- $t$: time (s)
- $J$: diffusion flux
- $n$: concentration
- $\mu$: viscosity (Pa·s)
- $r$: particle radius (m)
- $T$: temperature (K)
Viscous Drag (Stokes’ Law)
Force on a small sphere moving in a viscous fluid: \(F_{\text{viscous}} = 6\pi\mu r v\)
Symbols
- $F_{\text{viscous}}$: drag force (N)
- $v$: speed (m/s)
Terminal Velocity (falling sphere)
When drag balances effective weight:
\[v_t = \frac{2r^2(\rho_s-\rho_f)g}{9\mu}\]Symbols
- $v_t$: terminal velocity (m/s)
- $\rho_s$: sphere density (kg/m$^3$)
- $\rho_f$: fluid density (kg/m$^3$)
Vesicle Transport (motor proteins)
Velocity-ATP relation: \(v = R\,s\)
Symbols
- $v$: vesicle speed (m/s)
- $R$: ATP hydrolysis rate (cycles/s)
- $s$: motor step size (m)
- kinesin: $s \approx 8\,\mathrm{nm}$
- myosin V: $s \approx 36\,\mathrm{nm}$
Useful pixel → SI conversions (ImageJ labs)
If your tracking gives values in micrometers:
\[1\ \mu\text{m} = 10^{-6}\ \text{m}\]If tracking gives pixels and your calibration is:
\[1\ \text{pixel} \approx 0.193\ \mu\text{m}\]then
\[v(\text{m/s}) = v(\text{pixels/s})\times 0.193\times 10^{-6}\]and
\[r(\text{m}) = r(\text{pixels})\times 0.193\times 10^{-6}\]